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A new domain decomposition method is presented for the exterior Helmholtz
problem. The nonlocal Dirichlet-to-Neumann (DtN) map is used as a nonreflecting
condition on the outer computational boundary. The computational domain is divided
into nonoverlapping subdomains with Sommerfeld-type conditions on the adjacent
subdomain boundaries to ensure uniqueness. An iterative scheme is developed, where
independent subdomain boundary-value problems are obtained by applying the DtN
operator to values from the previous iteration. The independent problems are then
discretized with finite elements and can be solved concurrently. Numerical results
are presented for a two-dimensional model problem, and both the solution accuracy
and convergence rate are investigated; 1998 Academic Press

Key Words:Helmholtz equation; exterior problem; domain decomposition; non-
reflecting boundary conditions; finite element method.

1. INTRODUCTION

In acoustics, the Helmholtz equation is the basic equation governing the propagatior
scattering of time-harmonic sound. As a result, it has been extensively treated both
lytically and numerically. However, as the field of applications extends to more comp
problems and geometries, one needs to develop more accurate and powerful computa
methods. Computational acoustics must resolve the waveform with minimum disper
and dissipation. This requirement leads to a large number of grid points and, as a c«
guence, one ends up solving a very large system of equations. Numerical methods deve
for solving such systems generally use iterative schemes. Because of the large mema
guirements and to take advantage of parallel implementation, more recent iterative sch
are based on Schwarz domain decomposition wherein the computational domain is diy
into several smaller subdomains which can be treated concurrently.
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There are, however, many fundamental issues associated with such methods.
one needs to define the boundary conditions between adjacent subdomains so as to
unigueness and convergence of the solution. Other issues are whether to consider un
laxation and/or subdomain overlap as a way to accelerate the convergence of the sct

A domain decomposition numerical scheme will give a unique solution if the bounde
value problem associated with each subdomain has no eigen-solutionse®gHphas
shown that Sommerfeld-type boundary conditions between adjacent subdomains will
to a unique solution of the Helmholtz equation in a given finite domain. Moreover, he
also shown that such a solution will converge to the exact solution of the boundary-v:
problem.

The present paper is concerned with developing a domain decomposition method (D
for an external scattering problem in an infinite domain. One important application for |
class of problems can be found in aeroacoustics wherein a streaming motion interacts
a body and radiates sound in the far field. The governing equations for unsteady f
are the Navier—Stokes equations. However, because of the large memory and CPU
requirements in aeroacoustic computations, it is often possible [2, 3] to divide the f
domain into inner and outer regions with an overlapping area or simply separated b
artificial surfacd™ as in Fig. 1. In the inner region surrounding the body, sound is genera
as a result of the generally nonlinear interaction of the incoming flow with the body (
nonuniform flowregion). In this sound-generating region the Navier—Stokes equations
as often is the case, the Euler equations are used to model the flow. In the outer re
which may extend to infinity, sound propagates. If viscous dissipation is negligible in
outer region, the linearized Euler equations can then be used to model the propag
sound. Euler’'s equations linearized abouhean uniform flowcan be reduced to a single
Helmholtz equation for a function related to the pressure or to the unsteady potentic
shown in [2, 4].

In order to completely define the boundary-value problem for the inner (outer) regio
condition must be imposed along the outer (inner) boundary of this region in the overlap
case, or along the separating surfc& his condition also provides the coupling betwee
the inner and outer fields, and an iteration mechanism for the two solutions. Morec

e / outer boundary
(with non-reflecting
boundary conditions)

upstream flow

— ]

(
\ Sommerfeld radiation
condition at infinity

FIG. 1. Schematic of a body in nonuniform flow.
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the causality principle leads to the usual Sommerfeld radiation condition for the ot
boundary-value problem.

Since dispersion and dissipation errors are cumulative, numerical computations of
steady flows may yield very accurate near- and mid-field solutions with inaccurate far-f
results [4]. Therefore, in a general aeroacoustic/aerodynamic problem, one may first
the inner problem by imposing, for example, a Sommerfeld radiation condition along
outer computational boundary [5]. The outer acoustic problem can then be solved
the Kirchhoff method, using the mid-field results of the inner problem [6, 7]. An iterati
scheme may thus be developed by solving again the inner problem with conditions
tained from the solution of the outer problem, and so on. Details of an iterative scheme
nonoverlapping regions, consistent with De=spf1] method, are given in Appendix A.

As already mentioned, the problem in the infinite domain exteridr ¢an be solved by
using the Kirchhoff’'s method [3], with the benefit of a priori satisfaction of the radiatic
condition at infinity. However, this method introduces nonuniqueness at the charactel
wavenumbers of the corresponding homogeneous interior problem (which is not a proy
of solutions of the boundary-value problem in its original form) [8, p. 474]. Besides, if t
Kirchhoff method is used with a free-space Green’s function, one needs to specify a
" both the values of the function and its normal derivative. These quantities are givel
the inner solution. However, numerical differentiation introduces significant inaccurac
[4, 6]. The alternative would be to use a special Green’s function which vanishes at
boundaryl". This, however, requires the solution of an integral equation and will not
practical for a complex geometry [7].

An alternative to the boundary integral formulation for the outer region is a domain-ba
computation. For numerical implementation, one needs to transfer the radiation cond
at infinity to anouter computational boundar® surrounding the body at finite distance.
At high frequency and high Mach number flows, the inner solution is very sensitive
spurious reflection frors. Itis therefore necessary to apply an exact nonreflecting bound
condition alongds. An exact analytical relation between the unknown function and its norn
derivative, called Dirichlet-to-Neumann map (DtN), can be derivef i§, for example,

a circle (in two dimensions) or a sphere (in three dimensions) [9]. Note that this nonlc
DtN map involves the values of the unknown function over the whole artificial bouritiary

In this paper we develop a domain decomposition numerical method to solve
Helmholtz equation in the outeomputational domaif surrounded by thmnerboundary
' andouter boundaryB (Fig. 1). The approach uses the domain decomposition meth
with Sommerfeld boundary conditions along the adjacent surfaces between the subdon
Dirichlet, Neumann, or Robin conditions along tilmer boundaryl”, and the DtN map
along theouter boundary5. The finite element method is used to solve the boundar
value problem in each subdomain. There are several advantages introduced by the p
method.First, instead of solving one large system of equations, one has to solve sev
independent smaller systems for each subdomain. This can be performed concurren
parallel computers. Moreover, at every iteration only the right-hand vectors need upde
while the subdomain matrices remain unchan@stongdthe nonlocal DtN map is applied
to the known values on the outer boundary from the previous iteration and it does not
nonzero elements in the subdomain matrices.

In Section 2 the general boundary-value problem is formulated and the DtN map
dition is introduced. In Section 3, the DDM is outlined and the boundary-value probl
is formulated for every subdomain. Section 4 presents the new approach for solving
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exterior Helmholtz problem, which combines the DDM and the DtN map. In Section
numerical results using the present method are shown for a 2D model problem. Both th
lution accuracy and the convergence rate are investigated. The conclusions are summ
in Section 6.

2. THE HELMHOLTZ PROBLEM IN AN EXTERIOR DOMAIN

LetI" be aclosed curve (in 2D) or a closed surface (in 3D)Antthe infinite (unbounded)
domain exterior ta@". We consider the boundary value-problem for the Helmholtz equatic

Lé =0 inD, 1)
g—f +iep =g onT, (2)
lim r<d-1>/2<2—f’ +i k¢> =0, ©)

whereL = V2 + k? is the Helmholtz operatok is the wavenumbegq is a given function

onT, « is a real constant] = 2 or 3, the space dimension= +/—1, the imaginary unit,

andr is the distance measured from the origin taken fgat¢ /dv denotes the outward
normal derivative.

The condition at infinity (3) is th&ommerfeld radiation conditiorwhich assures the
uniqueness of the solution. For a finite computational donsaimne must introduce a
computational boundarys on which a new boundary condition which replaces (3) mu
be imposed. For this purpose it is convenient thdie chosen to be a circle or a sphere
of radiusR, centered at the origin, for which the analytical solution in the exterior dome
D'=D — Q, with Dirichlet conditions on8 and the Sommerfeld condition at infinity,
is known. By differentiating this solution with respect to the radiy®ne obtains the
relationship between the function and its normal derivative,

% =M¢ onhB,
av
whereM is the DtN operator [9].
For the two-dimensional Helmholtz equation with the boundary condition

¢ =¢(R,60) onB, 4)

and the radiation condition (3), the solution is

]

1~ HPkr) [
o, 0) == —n___- cosn(® —6)¢ (R, 0" do’. (5)
w nz:(:) 2 (kR Jo
The prime or}_ indicates that fon = 0 the coefficient is halvedd,? is the Hankel function
of the second kind.
The relation between the normal derivative of the function and its valuBsi®abtained
by formally differentiating (5) with respect toand taking = R:

¢ k o=~ H?'kR) [
—(R,8) = M¢(R,0) = — _
(R, 6) ¢(R,6) nz HO R o

5 cosn(@ — 8¢ (R,6)d9 onB. (6)
v n=0



392 SUSAN-RESIGA AND ATASSI

The boundary-value problem (1), (2), and (6) is equivalent to the variational proble
find ¢ € H(R) such that for alw € HX(R),

/(Vw-V¢—k2w¢)d9+ia/w¢dF—/w(M¢)dB=/wng, (7)
Q r B r

where H1(Q) is the usual Sobolev space. To obtain a discrete form of this variatiol
problem, we discretiz&2 into a finite number of element subdomaigg;, and within
each element the function is approximated using the nodal vapfieand the nodal basis
functions,N?:

) = $IN(X).
i

The usual procedure of assembling the elements leads to a linear system of equations
additional nonzero entries in the matrix from the nonlocal DtN ma®. #nd Q are two
nodes o3, then the corresponding DtN contribution is

MPQ=/BNP(MNQ)dB

KRS H kR 1
_ KR$~/Hh” KR Np (R, 0)No(R, 6") cosn(® — 6')do do’. (8)
m 72 (KR)
n=0 Op— A Og— A0

For practical computations, the sum is truncated to a finite number of t&rntarari and
Hughes [10] have shown that in order to guarantee the uniqueness of the sdutiokR.
An alternative approach has been proposed by Grote and Keller [11], which keeps the ¢
DtN for the firstN modes (wherdN can be smaller thakR) while using the Sommerfeld
condition for the higher order modes. This ensures the uniqueness of the solution ir
computational domain and, in general, improves upon the accuracy.

Inthe present paper we are using quasilinear quadrilateral elements. If we assume co
angular spacingA#, between the nodes alor§y then the double integral in (8) can be
expressed analytically [12],

KR <=/ H? (kR) 4(1 — cosnA#)?
T — Hr(lz)(kR) A92n4

npQ = cosn(@p — QQ) (9)

In the above expression, the term foe= 0 is obtained by taking the limit far — 0 and is
equal to—[H.? (kR)/H® (kR)](A6)2. Note that the series in (9) is convergent because f
largen we haveH® (kR)/H? (kR) ~ —n/(kR). Therefore we can satisfy the condition
N > kR with minimal computational effort.

The computational aspects of the nonlocal DtN in conjunction with the finite elem
method (FEM) are discussed in [9, 13]. The major inconvenience due to the additic
nonzero elements introduced by the DtN operator in the global matrix has been addre
by Malhotra and Pinsky [14]. By recognizing that an iterative solver involves a matri
vector product, they proposed that this product be evaluated at the element level wit
the explicit assembly of any global matrices. As a result, by eliminating the full mat
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storage, this methodology reduces both the memory requirements and the computa
cost in comparison with the implementation proposed by Keller and Givoli [9].

The scheme we propose in this paper uses a different approach to overcome the
lems associated with the nonlocality of the DtN map. Instead of solving a global syster
equations, we are dividing the computational domain into several nonoverlapping sul
mains and then solving independently smaller systems of equations. For each subdc
only Sommerfeld-type boundary conditions are imposed (i.e., the quagtigy + ik is
prescribed), except eventually for the portiorTofor the subdomains adjacent to the inne
boundary. An iterative technique is employed to update the subdomain boundary condi
so that the correct global solution is recovered. The DtN opegatizonly on the values
from thepreviousteration (known) to find the boundary conditions for the current iteratic
and it doesnot add additional nonzero elements in the subdomain matrices. Thus fc
structured grid one can efficiently use a band matrix storage for each subdomain.

3. DESPRES DOMAIN DECOMPOSITION METHOD
FOR THE HELMHOLTZ EQUATION

DespEs [1] proposed an iterative nonoverlapping DDM for the Helmholtz problem,

Lo=1T inQ, (10)

%Hkqj:g onog, (12)
av
where is a bounded open set R andd<2 is its boundary.
The main idea was to choose Sommerfeld-type transmission condition between st
mains so that there are no real eigenvalues for the inner homogeneous problem, ar
DDM is well posed. This leads to the following iterative scheme,

Lo™T = f in €, (12)
(3 + k)™t = (=, + k)¢ on%ij, 13)
(8, +ik)gp™ ™t =g ony;, (14)

whereg; is a finite sequence of nonoverlapping open sets embeddedich thatQ =
UQi, T j = 2 NQ; for contiguous?; andQ;, i = ©; N a2 andmis the iteration index.

The convergence proof was done by considering the following homogeneous prol
for the errore"=¢ — ¢,

L™t =0 in<, (15)
(8, +ik)e™t = (-a, + ik)e" onx;, (16)
(3, +ik); ™l _0 ony;. (17)

If we introduce the boundary error energy calculated along the subdomain boundarie:

=52 [ (s wie?).
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then it is possible to establish
E™ = E™ — 4k2 / |em2. (18)
Q2
Since E is positive, E> 0 as the iterations evolve and, consequefly;> 0.

4. THE DOMAIN DECOMPOSITION METHOD WITH
DIRICHLET-TO-NEUMANN MAP

Using the concept of Sommerfeld-type transmission conditions we have constructe:
following DDM nonoverlapping scheme for the boundary-value problem (1), (2), and (

Lo =0 . (19)
84;“:1 ™ = g ont, (20)
(8, + K)o = (=8, +ik)¢™  onxi ], (21)
(3 +iK)™ "t = (Mo™); + ikg™ onB;, (22)

wherel’; =T'NJdQ;, B =B N 09, and M denotes the DtN operator. Note that we hav
replaced in the right-hand side of (22) the normal derivalivg" by its exact expression
Me@™ which satisfies the condition at infinity (3).
For the first iteration, the right-hand side terms in (21) and (22) are taken to be zero
In order to investigate the convergence of the new iterative scheme, one wants to o
an energy-type equation similar to (18), starting with the following homogeneous prob|
for the errore™=¢ — ¢,

£e™t =0 inQi, (23)

aqr:l o™t = onTy, (24)
(3y +ik)e"t = (—d,, +ik)el onxij, (25)
(8, +ik)e™t = (MeM); +ike" onB;. (26)

If we define the boundary error energy as

E= / 3,8 + kg 2 —(a—k)z/ le|? 27
> [, (el ) i @)
then it can be shown (see Appendix B) that
EMI_EM = / (|Mem + ike"? — [—3,e™ + iké“\z)
B

:/{|Mem|2—\avemyz+2k[s@/\4em>+s(@auem)}}, (28)
B
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where€e™ is the complex conjugate @ and<$ denotes the imaginary part. Note that if
we takeMe™ = 3,e,, = —ike™, which corresponds to Desgx iteration scheme, Eq. (28)
reduces to (18).

The two-dimensional DtN map can be rewritten as

k & 2
(MP™(R.6) = =) ¢ / cosn(® — 68)¢™(R, 6') do’, (29)
T n=0 0
with
—H(Z'(kR) .
o m forn =0,
Ch’ =

4

H® KR = H2 (kR)
2H? (kR

forn>1,

whereSc®? < 0 and is bounded [10]. If we assume only theie™ ~ 9,€e™, and substitute
this in (28), we obtain

;R > (se)er| <o. (30)

E™ _ EM = 4k / I(EMe™) = 4k?
B n=0

where

2
> 0.

2 2 2
Cl= ’/ cogng)e™(R,0)do| + ‘/ sin(nd)e™(R, §) do
JO 0

As a result, it can be seen that the energy defined by (27) decreases at each iteratior
increases.

5. NUMERICAL RESULTS

In order to assess our computational approach, we consider a model problem w
known analytical solution. Figure 2 shows this model problem, which consists of a sol

2 TR
2 -15-1-05 0 05 1 15 2

FIG. 2. The computational domain and the finite element mesh.
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located at a point S in an unbounded domain and radiating sound. The potential assoc
with such a sound source can be written as

¢ = HE? (krs),

wherers is the distance to the source S.
The corresponding computational problem is constructed as follows. A circle centere
S and of radiugz; is taken to be the inner boundary along which a Neumann condition,

9

5o = KHZ Ry,

is applied. The outer boundafy is a circle centered at the origin O with radiRs. The
computation domain between the nonconcentric cificlasds is divided into two nonover-
lapping subdomaing; and$2, by a boundarg consisting of the intercept betwe&rand
B of a line passing by the origin.

The wavenumber was takdn= 7. Four noded quadrilateral elements are used to di
cretize the subdomain boundary value problems. Figure 2 also shows the finite ele
mesh for each subdomain.

For the first iteration, the following Sommerfeld-like boundary conditions were assun
on the subdomain boundaries excEpt

(3, +ik)¢? =0 onBands.

The next iterations are performed using one of two kinds of boundary conditiois on

(@) Sommerfeld-like,
(8, +ik)p™ =0 onB,.
(b) DtN map,
(3, +ik)p™* = (Mg™) +ikg™ onB;.

At every iteration, for each subdomaily we have to solve a system of linear equation
of the form

[Al{eM ) = {p"}.

Note that only the right-hand vector is modified from one iteration to another; the ma
[Ai] remains unchanged. This is anportantadvantage because the system matrix nee
to be constructed only once. Moreover, after computing the LU factorization for the s
domain matrices, solving a sequence of linear systems for different right-hand vectors
be performed at a reduced computational cost.

For the numerical implementation of the iteration equation (21) on the subdomain in
faces we take advantage of the finite element formulatioR.if a node on the interface
%ij, then the corresponding entries in the right-hand vector at the itenatierl can be
computed as

—[A_j]P{¢,m},
—[A_ﬁ]P{¢im},

{b" e
{b"}e
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where LA_\,-] » and [A ] are the complex conjugates of the rows corresponding to thefod
in [A;] and [Ai], respectively. WherP is at the intersection between the subdomain inte
facesx and the inner or outer boundaries, the above equations are modified to accomm
the boundary conditions dn andB, respectively.

A quantity which can be used to evaluate the convergence of the iterative scheme i
norm

(1)

20

=3 [IIAY{eM ) — {0}
I
which in our case quantifies in some sense the change in the right-hand vector fror
iteration to another. The iterations can be terminated wheacomes smaller than a given
value.
For this particular model problem, we can also estimate the accuracy of the nume

solution in comparison to the analytical one. For each nodae can define the relative
error,

m_ ’ (¢rr1n) numeric (d’n)analytic’
" | (¢n)analytic|

(32)

This is a local indicator for the solution accuracy. A global accuracy parameter car
defined as the average relative error

— 2onén
(LS 33
¢ number of nodes (33)

Of course, the normdi™ can always be defined, whi§' requires knowledge of the analytical
solution. For the present model problem, as will be shown below, the two parameters
a similar behavior as the iterations evolve.

Figure 3 shows the relative err@err[%)] = 100¢,,), distribution for the converged solu-
tion. First, it can be seen that the Sommerfeld conditioBdeads to spurious reflections
with local relative errors up to 15%. The DtN map leads to the correct solution with O..
average error. Second, the iterative scheme practically eliminates the discontinuities
subdomain interfaces.

err [%) err [%)

-0.5 Pos

FIG. 3. The error distribution for (a) Sommerfeld-like boundary condition and (b) Dirichlet-to-Neumann m
onks.
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FIG. 4. The convergence history with DtN map on the outer boundary.

Figure 4 presents the convergence history for both the rband the average relative
errore. Note that the two parameters have similar behavior, althoughgoray be evaluated
for a general problem. Practically, an acceptable solution is obtained after 10 iteration

It should also be mentioned that the convergence rate can be improved by using unc
laxed iterations for the nonoverlapping DDM [15], or by using an overlap [16]. Howev
for the present paper, we limit our analysis to the application of the domain decomposi
algorithm in conjunction with the DtN map.

6. CONCLUSIONS

This paper presents a domain decomposition method for solving the Helmholtz equz
in the infinite domain exterior to an arbitrary boundaryThe finite computational domain
is obtained by surrounding with an outer boundar#. By choosings5 to be a circle (2D) or
a sphere (3D) and using the DtN map, the boundary conditions can be specified analyti

Because the computational domain may be too large, itis divided into several subdon
in which the boundary-value problem can be solved independently. The global solutic
obtained by iteration.

This new method has the following advantages:

(a) Although the DtN operataM is nonlocal, the present method appligs on the
values of the unknown function from the previous iteration and thus it dotisitroduce
additional non-zero elements in the subdomain matrix.

(b) The method is particularly suitable for parallel computing since at each iteration:
solves severdahdependenboundary-value problems.

(c) The matrix obtained by assembling the finite element matrices does not che
from one iteration to another; only the right-hand vector must be updated at each itera
therefore reducing the computational cost.

In conclusion, the use of DDM has removed the nonlocality drawback of DtN, leadi
at the same time, to a parallel algorithm.
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FIG. 5. Schematic for the inner and outer computational regions.

APPENDIX A: ITERATIVE SCHEME FOR NONOVERLAPPING
INNER AND OUTER REGIONS

Consider a computational domag surrounding the body and surrounded at large
distance by a surfad8. We divideS2 into an inner region{2in,, and an outer regiormqyt,
by a surfacd”, as shown in Fig. 5.

Let vinn and vqye be the unit normals ta™ outward of Qin, and Qqyt, respectively
(vinn= —vou). The arbitrary surfacE is located at a distance fro8such that the unsteady
flow in Qg is outside the strong interaction zone surrounding the body, and the flov
governed by the Euler equations linearized about a uniform mean flow. It is then pos:
to assume that in the neighborhoodthis linearization is valid and that on either side o
I" these equations can be reduced to a single Helmholtz equation for fungtipaadpoyt
related to the unsteady pressure. Thus, we have

(V2 + k?)¢inn = 0, (34)
(V2 4+ K?)pout = O, (35)
R(gpou) =0 alongB, (36)

where we have assumed thit, satisfies a radiation condition (36) alosg The flow in
Qinn i, in general, governed by a system of nonlinear equations (Navier—Stokes or E
with specified conditions alon§.

In order to complete the two boundary-value problems, we propose the following itera
scheme:

1. The inner boundary-value problem is first solved with the condition

I -
% +ik¢\2 =0 alongr. (37)
Vinn

2. The outer boundary-value problem, (35) and (36), is solved with the condition

9 0 . 9 (0) . )
Yout | Koot = — ™ + ikgi = 2ikgy  alongT. (38)
0Vout dVinn
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3. The inner problem is then solved with

@
™ 4 ik = a¢°“-+|k¢“>—-2m( St — ) along, (39)

inn = out = inn
9Vinn Vout

and so on for thenth iteration,

3¢.(nr2) m %)) (
+ik _2m§: ' ) 40
3V|nn ¢|nn out — |nn ( )
dpout ike™ — 2ike™ kz () (J)
8\/ ; +I ¢0Ut - 2' ¢inn 2' out — |nn (41)
ou

APPENDIX B: DERIVATION OF THE BOUNDARY ERROR ENERGY EQUATION

In [1] Despes proved that ig is the weak solution for the Helmholtz equation in the
domaing, then on the bounda2 we have

/ |<au+ik>e|2=/ |<au—ik)e|2=/ |a,ef? + K2|ef?. (42)
JoQ I aQ
Using this result, the energy defined by Eq. (27) can be written for one subdémam
Eim+1:/ |(3ui+ik)e,m+1|2 k)z/ ‘ m+1|
Qi
= [ 16+ [ o, e
EIJ BI

The last two integrals can be written in terms of the solution at the previous iterat
according to Egs. (25) and (26),

Eim“:Z/ \(—auk+ik)q'<“\2+/ |(Me™),
kK Y Zik Bi

where the sum is performed for all subdomainsadjacent ta?; .
The energy for all subdomains will be

Em+1 ZEm+1
= —,, +iK)eM|* — (@ — k)? / m|2
ZJ:/BQJK o )ej| o ZI: rj |e]|
_Z/ [(—d,, +”‘)eﬁn|z+/ |((MEe™) + ike"|2
i /B B

= Em+/ (|Mem+ikem|2— \—auem+ikem\2).
B
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The second part of Eq. (28) is obtained by using the identity true for any two comg
numbersz; andzo,

H 2 2 2 5
|21 +122|° = |z1]" + | 22" + 23(2221),

wherez, is the complex conjugate @ andS denotes the imaginary part.

[N
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